The
We can use WES to find these malfunctions in the genome.
We define exons as the coding part of the DNA that takes part in the formation of proteins. These exons comprise approximately one to five percent of the genome and are collectively known as the exome.
The majority of the disease-causing variants occur in the exome. The exome is one of the best-understood parts of the human genome; thus, its sequencing makes detecting diseases easier.
We can define WES as:
An efficient and comprehensive genetic test that identifies the DNA changes rapidly and reliably.
It's a genomic technique for sequencing all protein regions of a genome. The basic gist of the WES working comprises two parts. These are:
Target enrichment strategies allow us to selectively capture the genomic regions that are required from DNA.
There are many techniques for target capturing the DNA; only a few can capture the entire exome. There are two techniques for this:
Single-stranded
DNA is then sheared to form double-stranded structures. These are then passed through the end repairing process, and
A pool of custom oligonucleotides is synthesized and hybridized to fragment the DNA sample. The oligonucleotides act as probes and are labeled with beads. These selectively hybridize the genomic regions of interest, whereas the excess parts are washed away. The beads are then removed, and genomic sequences are then sequenced selectively.
The illustration above shows how the DNA sequences are ligated to the oligonucleotides. Then the hybridization process takes place, and the labeling of beads is carried out. After capturing the probes, the selected regions are ready for next-generation sequencing.
There are many next-generation sequencing platforms available for the sequencing of exons. Some of these are:
All these are used for analyzing relatively short stretches of DNA sequences.
Following are the advantages of WES:
WES, along with exome enrichment, can effectively and efficiently help in identifying the coding variants. These variants include a broad range of applications, including the study of cancer, the genetics of the population, and genetic diseases.
Free Resources