The notna
function detects non-missing values in a series or a data frame. Non-missing values are values that are not null.
Null values are denoted by
None
orNAN
in Pandas.
Non-null values get mapped to True
, whereas null values get mapped to False
.
The illustration below shows how the notna
function works in Pandas:
The notna
function returns a mask of boolean values, which indicates whether each value is null or non-null.
Null values are denoted by False
.
Non-null values are denoted by True
.
The code snippet below shows how we can use the notna
function in Pandas:
import pandas as pdimport numpy as np# notna function on Seriesser = pd.Series([5, 6, np.NaN])print("Original series")print(ser)print('\n')print("Non-null Values")print(ser.notna())print('\n')# notna function on Dataframedf = pd.DataFrame(dict(age=[5, 6, np.NaN],born=[pd.NaT, pd.Timestamp('1939-05-27'),pd.Timestamp('1940-04-25')],name=['Alfred', 'Batman', ''],toy=[None, 'Batmobile', 'Joker']))print("Original dataframe")print(df)print('\n')print("Non-null Values")print(df.notna())print('\n')
Free Resources