The mad()
function in pandas lets us obtain the mean absolute deviation of values contained in the specified axis of the given data frame.
Mathematically, the mean absolute deviation of a given data is calculated as follows, where:
The syntax of the mad()
function is shown below:
DataFrame.mad(axis=None, skipna=True, level=None)
The mad()
function takes the following parameter values:
axis
: This represents the name of the row (designated as 0
or 'index'
) or the column (designated as 1
or columns
) axis.skipna
: This takes a boolean value that indicates whether N/A
or null
values are to be excluded.level
: This takes an int
value that specifies the count with a particular level. The mad()
function returns a DataFrame that holds the result.
# A code to illustrate the mad() function in Pandas# Importing the pandas libraryimport pandas as pd# Creating a DataFramedf = pd.DataFrame([[5,10,4,15,3],[1,7,5,9,0.5],[3,11,13,14,12]],columns=list('ABCDE'))# Printing the DataFrameprint(df)# Obtaining the mean absolute deviation vertically across the rowsprint(df.mad())# Obtaining the cumulative maximum horizontally over the columnsprint(df.mad(axis="columns"))
df
.df
.mad()
function, we obtain the mean absolute deviation of the values running downwards across the rows (axis 0
). We print the result to the console.mad()
function, we obtain the mean absolute deviation of the values running horizontally across the columns (axis 1
). We print the result to the console.