What is DataFrame.is_empty() in Polars?

When working with data, there’s a need to verify the state of the DataFrame before manipulating the data or after applying filters to the actual data. The DataFrame.is_empty() fucntion checks whether the DataFrame contains data or is empty, which helps us ensure that the data is available for manipulation and other tasks. In this Answer, we’ll explore how to use the DataFrame.is_empty() function.

The DataFrame.is_empty() function

The is_empty() function in Polars checks whether a DataFrame contains any rows or data. It returns true if the DataFrame is empty (contains no rows) and false if it has at least one row of data.

Syntax

Here’s the syntax for the is_empty() function:

DataFrame.is_empty()

This function doesn’t require any parameters, and it’s applied to the given DataFrame to check whether it’s empty.

Return value

The is_empty() function returns a boolean value, i.e., true or false.

Code

In the code widget below, we have two Polars DataFrames. One has data on students and their marks in different subjects, and the other is empty. We apply the is_empty() method on both DataFrames and print the acquired output.

import polars as pl
df = pl.DataFrame(
{
"Students": ["Joseph", "Danial", "Ema", "John"],
"Calculus": [98, 85, 92, 67],
"Data structures": [91, 89, 92, 55],
"Operating system": [96, 88, 91, 62],
}
)
empty_df = pl.DataFrame([])
print("Is df DataFrame empty?", df.is_empty())
print("Is empty_df DataFrame empty?", empty_df.is_empty())

Code explanation

Let’s discuss the above code in detail:

  • Line 1: We import the polars library as pl.

  • Lines 2–9: We define the Polars DataFrame as df for the students’ score reports for calculus, data structures, and operating system courses.

  • Line 11: We define another empty DataFrame named empty_df.

  • Lines 13–14: We apply the is_empty() function on both DataFrames and print the result.

DataFrame is a very popular data structure used commonly for data analysis and manipulation tasks. The Polars library provides a lightweight and fast mechanism to work with DataFrames. In this Answer, we saw the working of the is_empty() function to check the emptiness of DataFrames.

Free Resources

Copyright ©2025 Educative, Inc. All rights reserved