Linear algebra comes into play in the data science and machine learning domain a lot. NumPy is the scientific computing library for Python, which provides several linear algebra functionalities. NumPy also provides the module required for linear algebra in the form of linalg.
Below, are some common linear algebra operations that use NumPy.
import numpy as npfrom numpy import linalgA = np.array([[1, 2, 1],[4, 9, 5],[4, 8, 11]])print("Rank of matrix A:", linalg.matrix_rank(A))print("Determinant of matrix A:", linalg.det(A))print("Inverse of A:", linalg.inv(A))
import numpy as npfrom numpy import linalgarr = np.array([[3, -4j], [5j, 6]])print("Given Array:",arr)e1, e2 = linalg.eigh(arr)print("Eigen value is :", e1)print("Eigen value is :", e2)
import numpy as np# x + y = 6# −3x + y = 2arr1 = np.array([[1, 1], [-3, 1]])arr2 = np.array([6, 2])arr = np.linalg.solve(arr1, arr2)print ('x =', arr[0])print ('y =', arr[1])
import numpy as np# dot product of two vectorsa = np.array([1+2j,3+4j])b = np.array([5+6j,7+8j])product = np.vdot(a, b)print("Dot Product : ", product)# inner product of arraysa = np.array([1,2,3])b = np.array([0,1,0])product = np.inner(a, b)print("Inner Product : ", product)# matrix multiplicationa = np.array([[1, 0],[0, 1]])b = np.array([[4, 1],[2, 2]])product = np.matmul(a, b)print("Product of Matrices : ", product)