How to implement sentiment analysis in React with AI

Key takeaways:

  • Integrating AI in React apps enhances user engagement with real-time insights.

  • Google Cloud Natural Language API makes sentiment analysis easy to implement in React app.

Let’s walk through a simple example of implementing sentiment analysis in a React application using the Google Cloud Natural Language API. This example will involve setting up a new React project, integrating the Google Cloud Natural Language API, and displaying the sentiment analysis results in the application.

1. Set up a new React project

First, create a new React project using the Create React App. Open your terminal and run the following commands:

npx create-react-app sentiment-analysis-react
cd sentiment-analysis-react

2. Install dependencies

Next, install the necessary dependencies for making HTTP requests and handling environment variables:

npm install axios dotenv

3. Set up Google Cloud Natural Language API

If you haven’t already, sign up for a Google Cloud account and create a new project. Enable the Cloud Natural Language API for your project and create API credentials (a service account key).

4. Create a .env file:

In the root of your React project, create a .env file and add your Google Cloud Natural Language API key:

REACT_APP_GOOGLE_API_KEY=your_api_key_here

5. Create a component for sentiment analysis

In the src directory of your React project, create a new file called SentimentAnalysis.js and add the following code:

import React, { useState } from 'react';
import axios from 'axios';
const SentimentAnalysis = () => {
const [text, setText] = useState('');
const [sentiment, setSentiment] = useState(null);
const analyzeSentiment = async () => {
try {
const response = await axios.post(
`https://language.googleapis.com/v1/documents:analyzeSentiment?key=${process.env.REACT_APP_GOOGLE_API_KEY}`,
{
document: {
type: 'PLAIN_TEXT',
content: text,
},
}
);
setSentiment(response.data.documentSentiment);
} catch (error) {
console.error('Error analyzing sentiment:', error);
}
};
return (
<div>
<textarea
value={text}
onChange={(e) => setText(e.target.value)}
placeholder="Enter text for sentiment analysis..."
/>
<button onClick={analyzeSentiment}>Analyze Sentiment</button>
{sentiment && (
<div>
<h2>Sentiment Analysis Results:</h2>
<p>Score: {sentiment.score}</p>
<p>Magnitude: {sentiment.magnitude}</p>
</div>
)}
</div>
);
};
export default SentimentAnalysis;
  • Line 4–6: Here, we define a functional component called SentimentAnalysis. This component will render a text area for input, a button to trigger sentiment analysis, and the results of the sentiment analysis.

    • Line 5: This line uses the useState Hook to create a state variable called text and a function called setText to update the text variable. The initial value of text is an empty string ('').

    • Line 6: Here, we create a state variable called sentiment and a function called setSentiment to update the sentiment variable. The initial value of sentiment is null.

  • Line 8–23: This section defines an asynchronous function called analyzeSentiment. This function will make an HTTP POST request to the Google Cloud Natural Language API to analyze the sentiment of the text. const response = await axios.post(...); makes an HTTP POST request to the Google Cloud Natural Language API using the axios library. The URL of the API endpoint is constructed using a template string, and the process.env.REACT_APP_GOOGLE_API_KEY variable is used to include the API key in the request. setSentiment(response.data.documentSentiment); updates the sentiment state variable with the sentiment analysis results returned by the API. console.error('Error analyzing sentiment:', error); logs an error message to the console if an error occurs during the sentiment analysis.

  • Line 32–40: These lines render a button that triggers the analyzeSentiment function when clicked. {sentiment && ( ... )} uses a conditional rendering pattern to render the sentiment analysis results only if the sentiment state variable is not null. The results are rendered as a div containing an h2 element with the text “Sentiment Analysis Results:”, and two p elements displaying the sentiment score and magnitude.

6. Use the SentimentAnalysis component

In the App.js file, import, and use the SentimentAnalysis component:

import React from 'react';
import SentimentAnalysis from './SentimentAnalysis';
function App() {
return (
<div>
<h1>Sentiment Analysis with Google Cloud Natural Language API</h1>
<SentimentAnalysis />
</div>
);
}
export default App;
  • Line 2: This line imports the SentimentAnalysis component from the SentimentAnalysis.js file in the same directory as the App.js file. The SentimentAnalysis component is a functional component that performs sentiment analysis using the Google Cloud Natural Language API.

7. Run the React application

Start the React development server by running the following command in your terminal:

npm start

Try it for yourself

Try running the code given below and try out the sentiment analysis tool yourself. Make sure to replace your API key in the .env file.

 ãF )   95@@ °n‰PNG


IHDR(-SäPLTE""""""""""""""""""2PX=r€)7;*:>H¤-BGEˆš8do5Xb6[eK™®Kš¯1MU9gs3S\I“§:gt'03@{‹V¹ÔT´ÏA}V»Ö@y‰6\fH’¦-CII”¨Eˆ›+;@7_i7_jFŠJ–«K›°H£-BHaÚû,@FCƒ”L³&.0W½ÙN£ºI“¨$)+B‘J•ªR¯È?v†>s>u„S±Ê=qP©ÁP¨ÀP§¿,?D4U^%+-M ¶K˜®%+,2OX+<ALœ²#&&D†˜%,.I•©vôTötRNSIæçJäeÀe¦©IDATxMŽµZEA„ÿÙ³	îî%R¡ïßáTThÇG…»,Á®Å=²Òîmífímnf’A–$â‡>!¦gºôHg½Eߏܵ}	Ý»ý‡º¼kdú§¯Jo—™Î3æL"J¹ ›ÌÕüQ‡$âçļffµ,é€5i9̟¯H¨/mB†‡wÍÜw;D
Ø+&‚W«ª¹¨Dôo@Ê´RI©ÐB¡om.Û³ÀIEND®B`‚‰PNG


IHDRשÍÊePLTE""""""""""""""""""""""""2RZN¢¹J–«3R[J—¬)59YÁÞ0KS4W`Q«ÄLœ²%+-0JR)6::gtC‚“"##?v†U·Ñ?w†<n{&-/YÂß=q:iuBA}A{ŒB‘/IPP§¿=q€K™®_ÔóL³$();lzR¯ÉaÚûI“¨ZÆã3U^1MU3T]ZÅâI“§X¿ÜF‹ž-BGP¨À6[e,@E5ZdO§¿-BHX¿Û+=AW¾Ú,@FW¼ØQªÃ?v…W¼×+<A@yˆ"#$\Ìê4Wa\ÌëS²Ì$(*.EL^ÑñVºÕ6]h#$%GŽ¡#&';jwV¹Ô-CIL›±ZÄá^Ðï>u„S°Ê/HNM ·_Õõ\ËéM ¶8doD…—D†˜>tƒ+=B[Èæ,>C>t‚<o}@y‰0LS.EKT´Î$'(%,.A~ŽW½ÙC’%+,\ÊèC!ätRNS‘í‰œG¾ÖOIDATxl‰ÃB¶Q…Ÿu´ß_ȳ<˦Ýveê²óa6AξŒûv¢{@ÎE'ÞdIÕ!çží ðC—ÔT‹þg1ÂE(ÏñSQsâi
ď…Zÿ·V¹Ð)ég!‰ªhÎùtéº-i}˜µµ<Õ?¶lBZaÄ´4{DÓ⌻_e8¥yǁ­À3ž)Ÿ¥?°f;8.ã¤tÌ=å;	:ã52fKZìlù¨ØšÍ9.ž#ƒÒAÁqÌúÛ®£Vÿ`=$¬Â?_¶¾®ÔqMç.ïJ$
?^q÷ñíۏï.},‚ìsæÝ_TttÔ¾1#‰/(ì—-[è`è`ÌÚïÅðZd5’Ž™›?ÎebZ¿Þˆi.Ûæ™ìq΄+1°}Œ5ùïçd¨G•ÏøIEND®B`‚‰PNG


IHDR  D¤ŠÆAPLTE"""""""""""""""""""""""""""2RZVºÖ_ÔôU·Ñ=r€$()'25]ÎíCƒ•0LS<o}XÀÜX¿Û0JQ=p~D„–<n{VºÕE‡™8do_ÔóEˆšF‹žH‘¥9dp_ÕõH¤I“¨FŒŸ6[e`Ö÷`×øL³/GM_ÓòU¸Ó'02P©Á/IPPªÂX¿Ü&/1;ly3R[`ØøGŽ¡T³Í\ÌêaÚû1OW"##Q«ÄaÙúR®Ç=q€`Öö.EL+=ATµÐ-CIK˜®#&'C‚“^ÐïI”¨&.04U^^Ñð@yˆZÇä$(*[Éç^Ññ,?DR¯É"#$1NV1MTD…—>u„;kxG R¯È/HN&-/@y‰>s>t‚@zŠ]ÍìP¨À$'(D†—]Ïî<n|0JRU·Ò×\¼	tRNS%­ñ'ïó(ò~ÑÝèžIDATx“šC1F_Ý¿MmÛ¶4¶m{ÿ˜¤n†çáÓ	®A$–à$b‘ Heø™TãWÄÂh•šh´:PtZ
Q«0@.`€Þ`4™-V`³Zì&‡A#ÁébkÝÄãñúØ>.''ø`C$FØÏ	‘(±x"6Xác”TÚéL§@Iù;dd-¹|¾P,Ȕ9¡R­ÕÍf3¢¿F½VmMíX§ÚíÍç@Y˜7ÎõºÕN¬=—ŽåÈʪu
}Ö¬«+‘e‡aiq ¤Ö76­íÝ=h
ûZìíîl›ë‡}á¨ʱ¥[F«I9A¹k9¥ÖëäŒ3¢Ã9ΡóžqB~Øáb¸ÃåU_¸^Ü[·ôw†ý{z‡v‡z‡Ù(Š£(Š£(þ›†Šfòq”ÉG–Éïkñ”ÏçŠY¾ÿªfäòÇ~à:*4ÓQ\O>Ÿ‘ ‡¼<דúW£éÍZ|ދÅ7“ñ•ïjTÔäãn”½»¢®`$Hð+ò¿GOñûð*èx‹•ø¥X*|”^ÿdIEND®B`‚‰PNG


IHDR@@·ì:PLTE"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""%+-@y‰W¼×`×ø^ÑñS²ÌC‚“,>C*8<XÁÝaÚûaÙùMŸµ+<AaÙúXÀÜ#%%TµÐLž´=q>u„K›°`ÖöA}L›±8do=r€%+,@yˆ^ÐïS²Ë)59=q€P©ÁU·Ò"#$PªÂ\Êè0JQQªÃ"##U·Ñ#&&_Ôô>t‚>s`Øø_Ôó5Yc1OW5Zd1NV+=B1MU+;@/GM\Ìê*;?3S\)8<2RZ_Õõ+=A]Ïî,@F,@E&-/0KS7alO¦¾9dp8amB~EˆšP¨ÀN¢¹'023T]]Îí?x‡3U^Cƒ•6\gU¸Ó&.0D„–7_iR­ÆH‘¥I”¨M ¶$(*?v…ZÆãX¿Ü-AG#$%[Éç8co[ÈæW½ÙC’'25?v†8bn%*+Lœ²N£º2PX)7;=p~(58^ÒòP§¿4WaQ«ÄT´Ï0JRQ¬ÅT´ÎI“¨6]hR¯ÉT³Í0LSF‹9eqEˆ›E‰œ9gsFŠCƒ”#&'\Ëé`Ö÷&/16\fB‘A{ŒR®Ç]Íì(47%,.*:>*9=9fr:gt7^iU¶Ð?w†ZÇäX¿Û^ÑðQ­ÅH£)6:V¹Ô'034U^E‡™.EL.FMK™®@zŠS×tRNS*Ž×øÖ”ý˜	»½•+üùóԐ,ØúôÀ=VIDATx¤ËµC!Ð‡C|ÿãÚ^yR]ÕMÛáO]ßÔÕÝ0NÈ2ÍËí¿"ªª¢(0Vã(ÀY%PDT-~(m¬ó!âKÞY£~´•üIÒf{³ÛÞáa¼§§ô3—ÕOp&”Ф‰¡xŽ÷#Ÿj­ôÚ¶mméòc)]m¤’‡É)Ƨgfçhk²ñÎÒ ægg¦Ç™šìÐ+X€ÅêuiyVת·k«°²\[ü:,Ø6ØÜjIJ
;»"»;°×XùþÛfÁáÇÍûý“SÎÎÏÏ8=Þo¾;æèÐ(ƒ‹öÓ¥BkÔeûÍ\7p+mîîáþNÚ<ÀQðOÒæùô³´y‚g»ttÐëo•ý½£ŸìVð»Òäsýü¬™ø”&_ðaüïV~à·Ö?­*8àQ ;8¥Á,¸¤‚f¥“1Üx¤†×§ñŸ*œøÑA¯Ôð°a#±³¶¦#ŠnP‘i+¼¶CÈ,ˆÆèäÍ_áNbÑá‚øç•HŽB*ÚÒ¦ L(^<ñÁ‚L6pJ¾P”É¥Ž©¢%"“R,ä9Èe3eRËa1(
¢ßqÇ8َ´ŠmK˱mƶmÛü·yi!èΪYÏuë ÀÏ_Àï?i÷ˆý+òŠÄA|ù{‘˜´?¿_En).JËD¤<€
©¬¢Z\Ts©R*(	¯©JŠ…uX/
4J9š¡5·DEµ4kÇ4‡&i¥V4Ú¡®Ð¯†vsf:àg,¢èBC»î$¶ºÍùá–@ôŠI_?<‘!^ŠÈàÓ½ÇöäõB‘%Làw±FD1ŠÁ¨(F€±øH˜%0Ʊ¿Å؄(¢0ˆÅÄ'Åæ—N.0u„@íY‡PWìIüaNâKš™Ä?ðÓµŒ=Žeœv/c—±ŒÓ0c0÷2Êë:ˆ06R-uÒÄ­\Q̶ää´¼µ6R#
ÆFš³6Òñ·rՁ­ìu˜æmâðž‡Iñi~ –Åü ÃsPþ"±óŸ¼
eiyå£ËPšàãÊò’§¡œÝÒ,S]U¦ºV…ªÖ”©®Z¦êoëë·xzã™âÆSnm¬{ÚºwaلÏ…Å»´Ýõ(mg/®þå½À¿¼ûŒ[§b³µq¶Å&Õ¯¹$ñzȊ‹H>aÌKT1/æø1O‚‰0¾.h͇YþAÓö£
-ê>ۋº«¢XÕ¢î}ߨëÛÑ;ÃöN´ØvÅýÎ¸ÿ1ë×ÄO@&v/Äþ_—ö\ôÇ\í.™½+0”;!fÊ¦´Ó% JY·O”ÂŽ'/Å]_Š;ßÀ'"&Nªn	aQ^”cx¦AáÒIEND®B`‚

Conclusion

With this setup, you’ve successfully created a basic sentiment analysis tool in React that leverages AI through the Google Cloud Natural Language API. This tool allows users to input text and receive immediate feedback on the sentiment, providing insights into the tone and emotion conveyed. Integrating AI into front-end applications can enhance interactivity and add powerful features, making your applications smarter and more responsive to user needs.

This implementation also demonstrates how easily accessible AI-powered features can be by utilizing cloud APIs, enabling even small-scale applications to harness advanced natural language processing capabilities. From here, you could extend the functionality by adding language detection, entity recognition, or even saving user feedback for more in-depth analysis. Experiment with other Google Cloud API features to expand your application’s scope and bring even more value to your users!

Frequently asked questions

Haven’t found what you were looking for? Contact Us


How to use AI to do sentiment analysis?

AI can perform sentiment analysis by using natural language processing models to classify text as positive, negative, or neutral based on emotional tone.


Can GenAI conduct sentiment analysis?

Yes, GenAI models like GPT-4 can perform sentiment analysis by interpreting and classifying text based on emotional tone.


What algorithm is used for sentiment analysis?

Sentiment analysis commonly uses algorithms like Naive Bayes, Support Vector Machines (SVM), or deep learning models like RNNs and transformers (e.g., BERT) for text classification.


Free Resources

Copyright ©2025 Educative, Inc. All rights reserved