Polars is a Rust-based DataFrame library for Python, offering scalable data handling as an alternative to pandas. With features like parallel processing and memory optimization, it excels in speed. Its DataFrame and Series structures allow seamless, efficient, and chained data transformations.
Firstly, we import the polars
library as follows:
import polars as pl
polars
Let’s create a Polars DataFrame for the Books
such as English
, Science
, and Math
. We will add their Prices
as follows:
import polars as plpolars_df = pl.DataFrame({"Books": ["English", "Science", "Math"], "Prices": [200, 500, 600]})print(polars_df)
polars
DataFrame to pandas
DataFrameAfter creating the polars
DataFrame, we will import the pandas
library and use a single line of code to convert it to a pandas
DataFrame. Let’s write the code below:
import polars as plimport pandas as pd# Create a Polars DataFramepolars_df = pl.DataFrame({"Books": ["English", "Science", "Math"], "Prices": [200, 500, 600]})# Convert polars DataFrame to pandas DataFramepandas_df = polars_df.to_pandas()# Display the pandas DataFrameprint(pandas_df)
Line 2: Import the pandas
library.
Line 9: Convert the polars
DataFrame to pandas
DataFrame.
Free Resources