How to access a single value in a row/column label of a DataFrame

Overview

We can access a single value for a row or column label of a DataFrame in Pandas with the help of the at attribute.

The at attribute is used to obtain a single value in a given DataFrame or Series.

Syntax

The at attribute takes the syntax below.

DataFrame.at
Syntax for the "at" attribute in Pandas

Parameters

As an attribute, at does not take a parameter value. It takes the index row and column labels of the desired value in the DataFrame.

Return value

The at attribute returns a single value in a DataFrame or Series.

Example

import pandas as pd
# creating a list of objects
int_values = [1, 2, 3, 4, 5]
text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
# creating a dataframe from the list of objects
df = pd.DataFrame({"int_column": int_values, "text_column": text_values,
"float_col": float_values})
# printing the dataframe
print(df)
# accessing the value "delta" present in the 4th row and in the "text_columnm" column
a = df.at[3, "text_column"]
print(a)

Explanation

  • Line 1: We import the pandas library.
  • Lines 4–6: We create a list of objects, text_values, int_values, and float_values.
  • Lines 9–10: We create a DataFrame using the list of objects we created by using pandas.DataFrame(). The name of the DataFrame is df.
  • Line 13: We print the DataFrame, df.
  • Line 16: We access the value in the DataFrame, "delta", which is found in the 4th row (index 3) and on the "text_column" column. The value is passed to a variable, a.
  • Line 17: We print the value of a.

Free Resources